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ABSTRACT 

An “almostLagrangian” formulation in quasi-one-dimensional geometry for the 
conservation equations of gasdynamics is presented that considers zones with mass 
sources and sinks. The differential equations are first derived by an integral approach. 
Then, the corresponding finite-difference equations and the calculational scheme used 
in the PUFL code for advancing the difference equations is given. By considering 
uniform flows, analytical solutions for the PUFL equations with both mass sources and 
sinks are obtained. Stability of the “almostLagrangian” equations is empirically 
discussed and tested by comparison of PUFL calculations with the analytical solutions. 
It is found that when the fraction of mass in a zone changes by no more than ~1% in 
any one calculational cycle, excellent agreement with the analytical solution is obtained. 
By using an additional time-step control which limits the amount of mass change per 
cycle, the “almost-Lagrangian” formulation appears to be feasible. 

The finite-difference equations of one-dimensional, hydrodynamic calculations 
are frequently cast in the Lagrangian rather than the Eulerian form for several 
reasons. Among these reasons are: (1) mass is explicitly conserved, (2) contact 
surfaces are preserved, and (3) for the same order of accuracy the differential 
equations are simpler [l], [2]. Addition of mass to a bounded flow, as in the 
ablation problem, can be handled by an Eulerian formulation [3]. However, the 
Lagrangian formulation leads to more accurate results with less calculation, 
particularly in problems with large initial discontinuities [4]. The traditional 
Lagrangian approach cannot be used directly in problems with mass addition 
because zones of constant mass are- assumed in the formulation. An “almost- 
Lagrangian” formulation that allows zones to have mass sources is, therefore, 
investigated. 

i This work was performed under the auspices of the U.S. Atomic Energy Commission. 
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In Section I, the “almost-Lagrangian,” quasi-one-dimensional, gas dynamic 
conservation equations are derived by an integral approach.2 The resulting 
equations reduce to the traditional Lagrangian equations in the limit of no volume 
expansion in the normal direction, no frictional forces, no energy sources, and 
constant mass. Implicit finite-difference equations are then written for the 
differential equations (see Refs. [SJ, [6]). Section II presents these difference 
equations and a calculational scheme, based on the artificial viscosity approach, 
used by the PUFL code to integrate them [6]. 

The unique feature in the PUFL concept is the Lagrangian zone with a variable 
mass. Features such as quasi-one-dimensional geometry with radially movable 
boundaries, energy sources, and frictional effects greatly extend the usefulness 
of the calculation; but some of these features are combined in other calculations [l]. 
The limits to which these features may be used is not, at present, accurately 
known; hence, in practice, they are conservatively used. Work is currently 
underway to investigate acceptable limits for these features, in particular, for the 
quasi-one-dimensional approach. However, in this paper attention is restricted 
to the acceptable limits for the unique feature of mass variation, 

Stability of the one dimensional “almost-Lagrangian” equations is discussed 
in Section III by following an approach used for the traditional Lagrangian 
equations [6]. Some PUFL calculations are considered in Section IV which 
indicate that the usual At stability criteria are necessary and that an additional dt 
control is desirable to limit the ratio of “change in mass/mass” per cycle to about 
1%. 

I. DERIVATION OF DIFFERENTIAL EQUATIONS 

The differential equations for conservation of mass, momentum in one dimension, 
and total energy are derived in the following. The derivations consider an element 
of gas with the general shape of a frustrum of a cone (Fig. 1). This shape allows 

FIG. 1. A typical element (PUFL zone) with the shape of a frustrum of a cone. 

2 All symbols are de6ned in Appendix D. 
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consideration of flow in converging-diverging nozzles and expanding pipes. 
Assumed in the derivations is the linearity of the sides of the element. The volume 
of the element, denoted by V, and the total surface area, ST, are calculated as 

v= % [RI2 + R,R, + R22] and (la) 

ST = S + A, + A, = n-(R, + R,)[@x)~ i- (R, - R2)2]1/z + n-RI2 + z-R~~, (lb) 

where S is the surface area of the zone touching the pipe wall; A, and A, are the 
cross-sectional areas of the surfaces of the zone normal to the flow in the pipe; 
R, and R, are the radii of the pipe at the locations indicated in Fig. 1; and Ax is 
the zone dimension measured along the center line of the pipe. 

On the “wrap-around” surface, S, may be sources (or sinks) of mass. If ti is 
the mass flux (mass/area-time) homogeneously entering the element through S, 
the mass entering the element in the time period At is r25’ At. Associated with the 
mass entering the element is a velocity U, and an internal energy per unit mass e, . 
Mass fluxes associated with the surface S are encountered in ablation and boundary- 
layer problems. The following derivations can be applied to a mass flux between 
adjacent elements if @zS is replaced by GzA and if the sources and the sinks balance 
on common boundaries. Mass transfer between adjacent elements is a situation 
encountered, for instance, in turbulent flows where mass diffusion is considered. 

The following derivations assume that all variables associated with an element, 
such as density, mass, pressure, and specific internal energy, are homogeneous 
throughout the element. 

CONTINUITY OR CONSERVATION OF MASS 

The time rate of change of mass in a zone may be written as 

(Dm/Dt) = rizS, 

using for the mass of the zone, m = pV, where p is density, we obtain 

After rearranging terms, this becomes 

CONSERVATIONOF MOMENTUM 

The equation for the conservation of momentum may be written as 

(2) 

(3) 

(4) 

(Dmu)/Dt = F + sources of momentum per unit time, (5) 
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where F is composed of (1) body forces acting on the element (FWFL presently 
assumes that these are negligible), and (2) surface forces acting on the element, 
which are 

s 
iio d& = V div o, 

ST 
(6) 

where ti is unit outward normal vector, and Q is the stress tensor. Eq. (5) may be 
rewritten 

[m(Du/Dt)] + [u(Dm/Dt)] = V div u + sources of momentum per unit time. 

Now, 

(7) 

u = u (for one-dimensional flow) 
V div Q = -V(+/ik) - ~$3 (from Appendix A) 

Dm/Dt = lizS (from continuity) 

SSu, = momentum per unit time from source, 

where p is the pressure in the zone, 7, is the shearing stress at the wall, and u, 
is the velocity of the mass entering a zone. 

Substituting these relationships into the momentum equation gives 

Du 1 -=- 
Dt m 

sq.4, -u)-vax- w  ap 7s . 

CONSERVATION OF TOTAL ENERGY 

The total energy of an element may be modified by the following: 

I. The rate of work done on an element by surface stresses, which is 

II. Sources of internal and/or kinetic energy carried by mass entering an 
element. 

III. The rate of energy supplied to, or generated within, an element 
independent of mass sources, which is A. 

IV. The rate of work done on the system by body forces, which is F l u. 

From existing Lagrangian calculations in both one and two dimensions [l], 
it is known that various forms for the modification of energy by methods III and 
IV are possible in Lagrangian calculations. Because heat and mass transfer are 
frequently closely related, Ei is included in the following discussions. One example 



PUFL, AN “ALMOST-LAGRANGIAN” GASDYNAMIC CALCULATION 65 

of a negative heat flux term and an associated mass flux, which can be used to 
simulate the turbulent ablation process, is described in Appendix C. Since body 
forces are usually negligible in gasdynamic problems, they are neglected in the 
following. 

Conservation of total energy is therefore expressed as 

g (mua/ + me) = jsTfi= l u dST + 

where m is the mass, e is the specific internal energy of the material in a zone, and 
ti is the rate of heat supplied to an element. Eq. (9) may be modified as follows. 
From Appendix B, the rate of work done on an element by surface forces in one 
dimension may be written as 

I Aa*ud&= Vu*divcr--p$+TJ(uI 
ST 

Pa) 

where 1 u 1 is the absolute value of the velocity. 
The rate of energy addition associated with mass addition is 

Wu,V + e3, CW 

where e, is the spectic internal energy of the mass entering a zone. 
Differentiating the total energy gives 

Dm $ (mua/ + me) = mu $$ + m g + (e + U2/2) x. 

Substituting these three equations in the equation for conservation of total 
energy, one obtains an equation for internal energy: 

De Du Dm Dm 
mDt = -muDt -u2/2= -e- Dt + Vu * div a 

(10) 

From continuity and momentum, respectively, the following relationships 
were found: 

(Dm/Dt) = tiS UW 

-mu(Du/Dt) = -Vu * div IS - uGzS(u, - u). WW 
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Substitution of these relationships in the above equation for internal energy 
and dividing by the mass gives 

De 1 -=- 
Dt m I 

-Vu * div a - uGzS(u, - u) - &W/2 - ehS + Vu * div Q 

--p~+~~SIr.d/ +7irSuw2/2+Ij2Se,+A. 
I (11) 

Combining terms, one obtains 

De 1 -=- 
Dt m 1 

SW4 - u,W + (e, -e)l -p~+i.Slul +fi/. (12) 

II. THE FINITE-DIFFERENCE EQUATIONS AND THE CALCULATIONAL PROCEDURE 

The differential equations derived in Section I are now expressed in finite 
difference form. The pressure is modified by the addition of a dissipative term, 
Q, which greatly simplifies the numerica solution of hydrodynamic shock 
problems [6] ; Q is negligibly small except in the neighborhood of the shock. 

Quantities associated with the mass of thejth element (i.e., zone) are centered 
at j + 4 while the zone boundaries, radii, velocities, and wall stresses are centered 
at j and j + 1. This centering is indicated in Fig. 2. 

The centering of time steps is shown in Fig. 3, where it can be seen that 

(13) 

Velocities are centered in time at IZ - 4 and n + GJ. Other physical variables are 
centered at n and n + 1. The variables are centered in time and space in a manner 
customary for traditional Lagrangian difference systems of the type shown by 
DeBar to conserve total energy [7]. Omission of the mass and heat sources and 
the frictional terms from the conservation equations given below results in the 
traditional Lagrangian difference system. 

The finite&ference equation for continuity is 
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That for momentum is 

+ (u;-l/2 - 24,) ( 
@+1/S S" 3+1/a + 6Lll2 S" i-112 

2 1 

+ .y 
( 

SL 12 + SLZ 
)I 2 ’ 

where 

%,s = P;+UZ + Qi",-,:'," 3 and Qi”,-,:‘,” is the dissipative term mentioned above 
that simplifies the numerical integration. The equation for energy is 

As the equations show, e, and u, are effective only in zones where rity+,,,, # 0. 
They are shown in the above equations as constants. Through the use of additional 
equations or tables, they can be treated as variables. 

The calculation proceeds schematically as follows for a general cycle, 12. 

1. Cycle n begins. 

2. Solve the momentum equation to obtain u;+l’s. 

3. ,;+l = xjn + ujn+1’aAtn+1’2, 

xy+11z = f (xj” + .;+,* 

4. Determine Ry+’ from whatever prescription is available. Presently radius 
profiles with respect to time and position are used. 

5. S9+1 3+1/z = rr(R;+l + Ry$)[(xy$ - x;+~)~ + (Ry+l - Rin+:z]1f2, 
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p+1 = 97(x;:; - 
3+1/z 3 

x’+1) ((R;+l)” + q+lR;i. + (Ry&!)2}, 

6. Compute $‘$,, and rij”,+,:, . A variety of prescriptions may be used to 
describe T$‘$,~ . The type presently used in PUFL is described in Appendix C. 
It relates Gz~$,~ to qT$,2, a calculated heat flux out of the zone, and fi$& = 
-q~$&“& . Since zone radii may vary with time, a prescription of ablation 
that connects mass flux, heat flux, and radius of the zone is possible in PUFL with 
only minor additions. 

7. Solve the continuity equation to obtain ~in+::~ . 

Un+1/2-U"+1/2 
I+1 j ' 

u$J2 - u;+ll2 < 0, 

8. &p+1/2 = 
3+1/z if 

0, f,4~+~/2 - un+lP > 0 
3+1 

0 if the zone’ is expanding radially; 

where C,,2 and C, are input constants (typical values are C,,2 N 3, C, N l), and 
C is the local sound speed. The first term with (0~)~ is the traditional artificial 
viscosity which is large at the shock front. The term that is linear in du provides 
damping for spurious oscillations in the sonic regions and is usually unnecessary. 

9. n+1/2 = - 
Pj+ljZ ; @7+1,2 + Pz/2)3 

u;y'iz" = ; (u;+ll2 + uy&q, 

m;$/1:,2 = i (my+l,2 + ~73,~Vjn+:1/J, 

R;‘l12 = ; (Rj” + R;+l), 

10. 

where C, is the dimensionless friction coefficient for tubes and may either require 
an auxiliary calculation or be treated as an input constant, 
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11. Solve the energy equation to obtain 

The (m)n+l quantities are a first approximation to their values at n + 1. 

12. Calculate fi;$ from an equation of state using I?;$~ and $& . 

14. Solve the energy equation to obtain ey$r,,, using P;$2 and e?+i12 3+1/a J ‘ust 

computed. 

15. Calculate P;:;,~ from an equation of state using #, and p;& . 

16. Advance time 
total time = tn + Lltn+1/2. 

17. Find a new dr, 

cyI/S = (Yj+l,zPln+:llzlP~~~,~)1’2~ 

where C$$. is the local sound speed in a zone, and the constant is approximately 
2 (see Ref. [6]). 

where the constant is chosen such that no zone may appreciably change its volume 
during one cycle. 

At3*+1/2 = Min I Const mT,+,/l:,a 
p+1 1 +a+1 1 I ' 

1+1/2 5+1/a 

where the constant is of the order of 10-2. This condition is discussed in more 
detail in Sections III and IV, It insures that the mass of a zone does not change 
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by a large fraction during one cycle. When energy sources or sinks are large, 
similar At criteria are used for them. 

&+1/a = Min(dt1 fi+lP, A t2n+W, A tjn+W) 

At” = &(&W + Ap+v) 

At%+1 = Atn+l12(an estimate) 

18. Advance cycle number 

n+1-+n 

go back to 1. for the next cycle. 

III. STABILITY OF THE “ALMOST-LAGRANGIAN" DIFFERENTIAL EQUATIONS 

In order to investigate the stability of the “almost-Lagrangian” differential 
equations, an approach similar to the one used by Von Neumann and Richtmyer 
for the traditional Lagrangian equations is considered [6]. The PUFL conservation 
equations, (4), (8), and (12), are restated below, with the following relationships 
used for: 

specific internal energy, 
e = (7 -! 1)p ’ 

wall shear stress 

mass addition 

Tw = 

M 1 dm -c--s 
m m dt 89 

one-dimensional plane flow 
1 dV au -- v dt = ax . 

Continuity: + = -pg+pp. 
TiT 

Momentum: $ = /3(uw - 24) -;CC(p+q)-C$. 

Energy : 
1 4 P 

p(y - 1) dt = pa(y - 1) dt 

(17) 

(18) 

@ + 4) au ---ax+ 
P "upl'u' +c (19) 

Artificial viscosity: q = p(C&lx)2 g I-$- 1 (Using C, = 0). P-4 
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For investigation of the effect of small perturbations Su, Sp, Sp, Sq which are 
imposed on a solution U, p,p, q, the solution variables in Eqs. (17) to (20) are 
replaced by u + u + Su, p -+ p + Sp, p -+ p + Sp, q ---f q + Sq. The resulting 
equations of first variation, which neglect terms of order S2 are: 

Continuity: -$- - 
I 

/3+~~sp+,+4=0, (21) 

Momentum: - (24, - u) p + y sp + /P g + pp + 2P Qf-p! 624 

+&sp+g-$=o, (22) 

Energy: ~-p-$-2s,(y-l)[e,+~~] +Pp -2Pb - 1) 

x ( cf ‘,” I3 + 4) + (r - l)(P + 4) g/s, 

+ @PYY - l)(u - 24,) - ?(y - 1) u2p23 + (Y - l)P(P +4&/ &f 

Artificial Viscosity: 
I 
(c,,ox)~ -$J-) Sp + [~(c,,LIx)~~ 1 g / ;I Su + Sq = 0. 

(24) 

Equations (21)-(24) are a set of linear simultaneous equations for Su, Sp, and Sq, 
whose coefficients depend on the solutions, p, U, p, and q. For investigation of 
the effect of perturbations that are rapidly varying compared with p, u, and p, 
this mean solution may be thought of as being constant in a small region in the 
(x, t) plane denoted by 0. 

In the following, only the region away from the shock front is considered, 
where q = 0, and the smoothly varying approximation for the solution p, u, p 
is frequently very good. In most physical situations, the significant region for 
ablation or condensation effects occurs at least a little distance behind the shock 
(i.e. behind the few zones where q f 0). Generally, for pipe flows, the aspect 
ratio (width/diameter) for the shock front itself is relatively small. Thus, mass 
perturbations introduced along the pipe walls are probably not handled 
realistically by a one-dimensional representation within the shock front itself. 

Solutions having the form 

sp = sp,,eikW-~t, 6~ = &Qk~+d, Sp = SpQeska+crt (25) 
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are then sought, where Sp, , 6u,, ,6p, , k, and 01 are constants and k is real. (For 
instance, the quantity 6p, may be considered as a small perturbation on the density 
p,, induced by a change in mass.) Substituting (25) into Eqs. (21) to (23) and 
rewriting Eq. (24) as 6q = 0 results in three simultaneous homogeneous linear 
equations in 8ppo ,6u, , and 6p, . When the determinant of these equations is set 
equal to zero, the following equation results: 

- k2p 2 - pa - 2/3p(y - W, + (u - z4J2/21 I 

+ p/3 - 2p(y - 1) ( cf ;” I3 + 4) + (r - 1) P $1 

+(a-p+g)(p+P~+2P~)(P~+Pf3-g++Y--l)P~) 

- ikp 
( 
fi - u 
at 

-ik(a-~+~)(-~p2(y-l)(u-~u,)-~(y-1)u2pa3+ikp(y-l)p) =O. 

(26) 

When only Fourier components with very large k are considered, and when cx is 
considered to be large, as in Ref. 6, the terms with OIL, k2a, a2k are dominant. 
Equation (26) then reduces to 

a3 + 4yk2p/p) = 0 (27) 

or a2 = -k2yp/p, and 01 is imaginary or zero. Thus, small disturbances propagate 
without growth or decay (Eq. 25), which is the same result as obtained for the 
traditional Lagrangian equations [6]. The mass addition terms do not, therefore, 
introduce first-order modifications into the Lagrangian equations in a region 
where shocks are unimportant. (If a similar analysis is performed for the region 
where shocks are important, q f 0, again the traditional Lagrangian results are 
obtained.) 

The equations of variation, (21) to (24), can be examined to determine which 
terms lead to the dominant terms in Eq. (26). When this is done for the traditional 
Lagrangian equations, Eqs. (21) to (24) exhibit the character of a wave equation 
in regions where q M 0 and a diffusion equation in the regions were q f 0. 
Stability criteria for the wave and diffusion equations are then found to be 
sufficient for the Lagrangian difference equations [6]. Since the mass addition, 
friction, and energy source terms introduce no first-order modifications in the 
traditional equations, it seems reasonable to investigate the traditional Lagrangian 
time-step conditions for the stability of these equations. This is discussed in the 
next section. 

For situations where k cannot be considered large or where mass or energy are 
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being rapidly modified (large /I or Z?), the elk, c?, ka terms in (26) increase in 
importance. When terms in ak, (Ye, k2, are considered, Eq. (26) reduces to an 
equation for 01 in the form 

a8 + a2A, + a(Az + iA + (A* + iAJ = 0, (28) 

where A, , A, , A, , A, , and A, are all real. An analysis of (28) is then appropriate 
in order to determine conditions on the A’s such that the real parts of all solutions 
for iy are zero or negative. When the above conditions exist, the additional dominant 
terms may give the Lagrangian equations a character different than the wave 
equation. In such a case, the usual stability criteria based on the wave equation 
may no longer be sufficient. 

When the wave or diffusion equation time-step criteria are used for the traditional 
Lagrangian equations with energy sources, instabilities are known to arise. These 
instabilities occur when an “appreciable” change in the energy of a zone takes 
place during a time step [l]. However, through experience, calculations with 
energy sources are known to give realistic results when the energy added per cycle 
is small compared with the energy already present in a zone, i.e. when [e-l(de/dt] dt 
is small. If introduced perturbations tend to grow in an unbounded manner with 
time, the time interval dt over which they are allowed to grow might be made 
“sufficiently” small that the perturbations remain bounded during this interval. 
Thus, if a “sufficiently” small time interval fit is used, a stable situation is achieved. 
This is the approach commonly used in calculations with energy sources. 

By analogy, a similar control on [m-l(&z/dt)] dt = ,&It may be appropriate 
for mass sources. This is also investigated in the next section where an indication 
of an acceptable limit for @lt is obtained. 

IV. FLOWS WITH MASS SOURCES AND SINKS 

In the following, two idealized problems are to be considered: one with mass 
sources (the “ablation” problem), the other with mass sinks (the “condensation” 
problem). Both problems consider a uniform bounded mass of gas, flowing 
without shocks, in a frictionless (TV, = 0), rigid, constant-radius (S/V = 2/r), 
pipe. Since the bounded mass of gas is uniform, gradients of the flow parameters 
in the direction of flow are zero (+/ax = au/ax = 0). For a Lagrangian element 
in a constant radius pipe, V-l(dV/dt) = au/ax; hence, &/ax = 0 implies that 
dV/dt = 0. 

With the previously mentioned uniform bounded-mass assumptions, the PUFL 
conservation equations, (4), (8), and (12), reduce to: 

Continuity: dP=&S 
dt V' 
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du 
Momentum: z = 7 (u, - u), 

Energy: (’ -2u”2 + e, - e] + fi/. 

If S/m = m-l(dm/dt) = /3, where @ is considered to be a constant, then 

dmlm = /3 dt and m = m, exp(/?t), (32) 

where m, denotes the mass at t = 0. In both the mass source (/3 > 0) and mass 
sink (j3 < 0) problems, the flow is considered to “interact” with the walls in such 
a way that the total energy of the flow remains constant. It is emphasized that 
the total energy requirement is used in the following only in order to easily obtain 
analytical solutions and is not required in PUFL where energy sources and sinks 
are permissible. 

M&s ADDITION(THE“ABLATION" PROBLEM) 

In order to consider the mass addition problem we make the following additional 
assumptions. The entering mass is considered to have no velocity, u, = 0, and 
a constant specific internal energy, e, = constant. The rate of energy lost from 
the bounded mass, --a, balances the rate of energy added by the entering mass, 
Se, , so that the total energy of the bounded mass remains a constant. In this 
case, fi and p are positive. 

With the previously mentioned assumptions for mass addition, Eqs. (29) to (31) 
reduce to: 

Continuity: 

Momentum: z d” =pu= A!l; 

Energy: 

The conservation equations (33) to (35) may be readily integrated. The results 
are shown below. 

P-m 
PO--m,’ 

U MO -=- 

uo m’ 
e - =?[I +!$!!(I -EL)], 
e. 

(36) 
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where p,, , u,, , e, denote values at t = 0 when m = m, and p,V = m (note, V = V,). 
The above expression for e/e0 vsmjm,, with various values of K = uo2/2e, , is 
shown in Fig. 4. 

10 
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- EQUATION (381 

CALCULATED POINTS 

- BAt = .OOl x 
- pAt = .Ol a 
- pAte.1 0 

1 10 100 1000 

dmo-+ 

FOG. 4. Specific energy vs mass for a uniform flow with mass addition. 

Some PUFL calculations are now considered for the idealized “ablating” flow 
just discussed. The mass flux entering the flow is calculated for each zone every 
cycle as: 

where p is a positive input constant. Hence, each cycle the ratio of “change in 
mass/mass” is a constant. 

The first three calculations considered here are identical except for the quantity 
fl At. In order to treat #? d t as a constant, At is kept at a constant value throughout 
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each calculation. Also, the same constant At is used in the three calculations. The 
three calculations have the following values for /3 d t: p A t = +O.OOl, +O.Ol, +O. 1. 

The constant dt is chosen such that it satisfies At = AX/~&,, , where Ax 
remains the same (since &/ax = 0) and C mBx is the maximum sound speed 
encountered during the calculation. The identical initial conditions use 
K = 2~,~/2e,, = 7. The calculations are allowed to run until the mass per zone 
increases to 1000 times its initial value. The results of these three calculations 
are also shown in Fig. 4. 

MASS DELETION (THE “CONDENSATION" PROBLEM) 

In order to consider mass deletion or the condensation problem, we make 
slightly different assumptions about u, and e, . The exiting mass is originally a part 
of the Ilow, hence it has the same energy as the flow and leaves with u, = u and 
e, = e. In this idealized condensation process, the exiting material is assumed 
to give up all of its energy when leaving, and the energy is assumed to all come 
back into the flow as an energy source. Therefore, ti = &S(e, + uw2/2) where 
fi is positive, and Gz is negative for mass sinks. Hence, as in the mass addition case, 
the total energy of the flow remains constant and the mass which becomes “wall 
material” carries no energy with it. 

With these assumptions, Eqs. (29) to (31) reduce to: 

Continuity: !$+p~~~; 

,Momentum: duldt = 0 ; 

Energy: ~=fi=Z!!J(e+$)=--L(p+~)$!~ 

These equations may be readily integrated to obtain: 

Continuity: P=E; 
p. m. 

Momentum: u/u0 = 1; 

Energy: 
e 
- =%(l +g) -g. 
e. 0 0 

(40) 

(41) 

(42) 

(43) 

w  

(45) 

Figure 5 shows e/e0 vs m/m0 from Eq. (45) for various values of K = uo2/2eo . 
Three PUFL calculations are now considered for the idealized “condensing” 

flow just discussed. These calculations are like those for the “ablating” flow, 
except for the previously described energy prescriptions required to conserve 



78 CROWLEY 

total energy. The initial conditions are again identical and have K = u,,2/2e, = 7. 
For these calculations, /3 is negative; and mass is being depleted by a flux which 
is also calculated by Eq. (39). Again a constant dt is chosen such that it satisfies 

c 
I EQUATION (45) 

- CALCULATED POINTS 

_ pAt = -.OOl x 
PAt = -.Ol A 

-PAt=-.l 0 

1 .o 
0.001 0.01 0.1 1 .o 

mj’mo --jr 

RG. 5. Specifx energy vs mass for a uniform flow with mass deletion. 

At = Ax/2C,, . The problems are ruti until the mass per zone is l/1000 of its 
original value. Notice, from Fig. 5, that the specific energy increases by 
a factor of -104 when the mass decrease by a factor of IO3 for i K = 7. 
Hence, the sound speed increases a factor of ~10~ during the calculation, 
[C = b!P//w2 = (y(y - l)e)l/“]. The constant At used in these calculations 
is therefore based on a sound speed lo2 larger than its initial value, C,, N 102C, . 
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The results of three calculations using the same dt but varying /I such that 
/3 dt = -0.001, -.Ol, and -0.1 are also shown in Fig. 5. 

From Figs. 4 and 5 it can be seen that the calculations deviate from the analytical 
solution for values of j/3 At I of about 0.1. However, for values of 1 j3 At 1 of the 
order of 0.01, the agreement with the analytical solution is excellent. It thus 
appears that in order to obtain realistic and stable solutions, the mass change 
per time step should be of the order of l/100 of the mass currently present in the 
zone, /3At = O(O.01). 

To demonstrate that a time-step condition of the form 

At<&= Ax 
’ 2c WY - 1) eY2 

is at least necessary throughout a calculation, even when I p At ) = 0.001, we 
consider another set of calculations. These calculations again simulate the idealized 
“condensation” case with identical initial conditions of K = uo2/2e, = 7. Both 
At and /3 remain constant and j3 At = -0.001 throughout each calculation. 
The zone sizes, Ax, initially are, and remain, the same in all of the calculations. 
The calculations differ by their value for At (and hence /3). The At’s used by the 
various calculations each use a different value for e in (46). Table I outlines: 
(1) the calculation considered, (2) the value of e used in (46) to define the 
constant At for that calculation, (3) an approximate value of e in the calculation 
when it becomes unstable and completely degenerates. 

TABLE I 

CALCULATIONS FOR DETERMINING A SUFFICIENT dt 

Calculation No. 
e used for At 

in Eq. (46) 
e by which 

calculation degenerates 

25eo 
lOOe, 
400eo 

2,500eo 
lO,~o 

e - 4eo 
e - 16e, 
e - 100eo 
e-400eo 
e-16OOe, 

u 
(1 

u Calculation is stable at e/e0 = 8000, where it was terrninated. 

Calculation No. 7 listed in Table I is the one shown in Fig. 5 for /3 At = -0.001. 
Calculations 6 and 7 remain stable throughout the calculation and give excellent 
agreement with the analytical solution. Before Calculations l-5 degenerate, they 
also show excellent agreement with the stable calculations. 
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The last column in Table I indicates that a time-step control of the form of (46) 
is required. It also indicates that the dt used in Calculations l-5 is sufficient for 
stability until the energy increases by a factor of approximately 4. Thus, in Eq. (46), 
instead of 
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APPENDIX A. DERIVATION OF SURFACE FORCES ACTING ON AN ELEMENT 

Consider an element of total surface area Sr and volume V (Fig. 6). In this 
figure, 6 is the unit outward normal vector at an arbitrary point P on the surface. 
At P, the stress tensor Q operates on the surface normal vector 7i to produce the 
stress vector s. Here s is the force per unit area exerted on the surface of the element 
by the medium into which fi is pointing. If Q is defined at all points P on the surface, 
then the total surface forces acting on the element are 

F= 
s 

60 d& . (Al) 
sT 

FIG. 6. A bounded mass of gas with total surface area Sr and volume V; ii is a unit outward 
normal vector at an arbitrary point P on the surface. At P, the stress tensor a operates on ti to 
produce s. 

The divergence of a tensor Q may be defined [8] as 

div o = $&I d 1 fia dST . 
sT 

642) 

Assuming that the above limit exists for an element, the total surface forces 
[Eq. (Al)] may be written 

F = Vdiv m = I fia d& 643) 
sT 

The stress tensor o may be defined as 

a = -pI + 7, C-44) 

where -p is the thermodynamic pressure, I is the idemfactor, and 7 is the stress 
deviator. Then, Eq. (A3) becomes 

F=Vdivm=- j,, fiPI dST + j,, fiTdST = -VdivpI + Vdiv r, WI 
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Consider for the present only the first term in Eq. (A5). 

- s +lpI dST = - V div PI. 
ST 

In general, 

1 
ap ap ap __ - -VdlvpI = --v ax, 7 ax2 q-g . I 

But, for one-dimensional flow, the above is simply -Vap/ax, since 

aj,qax, = aplax, = 0. 

Hence Eq. (A5) may now be written as 

ap F=Vdiva=-Vax+ sT 
I 

4~ dST . G46) 

For the description of the flow of gas through a pipe, the internal viscous 
stresses of the gas are usually negligible compared with the stress exerted by the 
wall on the gas. This stress exerted by the wall on the gas acts as a retarding force 
on the flow and may be mpresented as -rJ, where T, is the shearing stress that 
acts over a surface of area S; r, is related to C, , the dimensionless coefficient of 
skin friction [8], [9] by 

7 w = ~C,pu2. 647) 

If the integral in Eq. (A6) is approximated by -rWS, the total surface forces 
acting on an element may be written as 

F = V div Q = - V(ap/ax) - T$$. (Af.3 

APPENDIX B. DERIVATIONOFTHE RATEOFWORK DONEONAN ELEMENT 

The rate of work done by an element against surface forces may be represented 
by 

s (ho) * u dS, . 
ST 

The quantity 7ia l u may be rewritten as 

da ’ u = u l f&s = fj l (uu*) = 2 l ua, WI 
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where u* is the transpose of u, and o* = cr, since the stress tensor is symmetric. 
For a vector a, 

(B3) 

Assuming that the above limit exists and using Eqs. (B3) and (B2) in Eq. (Bl), 
the result is 

s 
fia.ud& = Vdivuo. (B4) 

ST 

The following identity for any vector a and tensor b is useful. 

div ab = a * div b + b l * grad a. 

When this identity is used in Eq. (B4), one obtains 

Vdivuo = V{u-diva+ a**gradu}. 

Since Q = -pI + 7, 

VI.7 - * grad u = V(-p1 * * grad u + T * * grad u). 

Considering the first part of the above, in one dimension, 

-p(I * * grad u) = -p(~u/~x) = -p (-$- -$) ; 

hence Eq. (B6) becomes 

W) 

w 

(B7) 

Va * * grad u = -p(dV/dt) + VT * l grad u. (B8) 

The term VT 0 * grad u is the irreversible dissipative work done on the element 
by surface stresses. In one-dimensional gas flow through a pipe, the pipe walls 
exert stress on the element, which results in irreversible frictional heating of 
the element. The term VT l * grad u may be expressed in one-dimensional pipe 
flow as rwS 1 u 1. Hence Eq. (B4) may be written 

s Aa * u dST = Vu . div Q - p(dV/dt) + T,S 1 u I. 
ST 

(B9) 

APPENDIX C. EXPRESSIONS DESCRIBING THE ABLATIVE PROCESS 
INTURBULENT FLOW 

An expression for heat transfer of the type commonly used in turbulent flow is 
discussed. 

The heat flux out of a zone may be written as 

4 = 4T - Tt4J, (Cl) 
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where T, is the temperature of the wall, T is the temperature of the gas flow in the 
pipe, and 01 is the local coefficient of heat transfer. For T > T, this becomes 

q = aT. w> 

By combining four dimensionless numbers, 

N,, = cxR/k Nusselt number, 
& = (FWP Reynolds number, where ~1 = viscosity, 
pR = (GCl)lk Prandtl number, where C, is the specific heat at 

constant pressure, 
ST = N,/(R,PR) = c&C,u) Stanton number, sometimes denoted 

by C, , the dimensionless coefficient of heat transfer. 

The expression C, = ST = Nu/R,PR for the dimensionless coefficient of heat 
transfer is derived by Schlichting [9]. The assumption is made in this derivation 
that both the main flow turbulent and sublayer laminar Prandtl numbers are 
equal to 1 .O. This implies the physical assumption that the same mechanism causes 
the exchange of momentum and of heat. This physical assumption is frequently 
referred to as the Reynolds analogy, which may be written C, = &C, . An 
expression for (Y can be obtained and used in the heat-flux term as follows. 

4 = [N~J(&PR)I pGT = CHPUCJ (C3) 

Using ideal gas relationships, e = C,T, and y = CD/C, , 

GT = (G4lG = WlKr - 1) PI, (C4) 

where C, is specific heat at constant volume, the heat flux term may be written 

4 = GIwu)l(Y - 1). (C5) 

The above approach for obtaining the heat flux is certainly only an approxi- 
mation. However, this simplified approach may adequately describe the general 
physical effects for a number of turbulent-flow problems. 

The specific heat of ablation is the energy require to ablate a unit mass of pipe 
material and may be approximated by [IO] 

q* = 4, + $3 WI 

where the quantities for the pipe material are 

E, = C&AT + hf + h,(an input constant), 
C,dT = enthalpy required to raise a unit mass of wall material to vaporization 

temperature, 
h, = specific heat of fusion, 
h, = specific heat of vaporization, 
h = specific total enthalpy of the gas flow, 
7 = turbulent transpiration coefficient, 
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The coefficient 71 is an approximation for the energy loss to the boundary layer 
and surrounding media [lo]. It may be treated as an input constant which depends 
on the material of the pipe. The specific total enthalpy of the gas flow is calculated 
as 

h = e + (p/p) + &” = ye + &4”. K7) 

The rate of heat supplied to a zone in the PUFL equations has been denoted by 
f&+1,2 * In order to simulate the turbulent ablation process, the heat lost from 
a zone may be calculated by 

I;Ti+*,2 = --4h-ll2s~+l/% . 

The mass tlux is then calculated as 

Cl 
e 
e, 
J% 
F 
h 
hf 
h, 
zl 

; 
k 
?n 

energy 

Gl. 4j+112 area-time mass 
3+1/z =4i*+1;2= energy = area-time * 

mass 

APPENDIX D. NOTATION 

cross-sectional area normal to flow in pipe 
local sound speed 
dimensionless friction coefficient for tubes 
dimensionless coefficient of heat transfer 
specific heat at constant pressure 
specific heat at constant volume 

input constants used in the calculation of Q (typical values are 
c; - 3, Cl - 1) 

specific internal energy of material in a zone 
specific internal energy of mass entering a zone 
= hf + h, + CAT, an input constant to PUFL 
body and surface forces acting on a zone 
specific total enthalpy 
specific heat of fusion 
specific heat of vaporization 
rate of heat supplied to an element 
(- 1)1/S 
idemfactor 
thermal conductivity 
mass 

W 
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?h 
A 

B 
P 
PR 

4 

4* 

e 

mass flux (mass/area-time) 
unit outward normal vector 
Nusselt number 
pressure 

R 
R? 
S 

S 
ST 

ST 
t 
T 
TW 
U 

u 

IUI 

uw 

V 
x 
a 

Prandtl number 
heat flux out of a zone (energy/area-time) 
specific heat of ablation 
artificial dissipative term added to pressure to simplify numerical 
integration (see ref. 4) 
radius of pipe 
Reynold’s number 
stress vector 
surface area of zone touching the pipe wall 
total surface area of a zone 
Stanton number 
time 
temperature of gas flow in pipe 
temperature of wall 
vector velocity 
scalar velocity [in one-dimension u = (u)] 
absolute value of the velocity 
velocity of mass entering a zone 
volume of a zone 
distance, measured along the center line of the pipe 
local coefficient of heat transfer 

B 
1 dm 7itS =-- 

Ilt 
AT 

rl 
P 
P 
a 

m dt m 

= CJC, , ratio of specific heats 
an interval of time 
temperature rise required to vaporize wall material 
turbulent transpiration coefficient 
viscosity 
density 
stress tensor 

7, 
7 
. . 

shearing stress at the wall 
stress deviator 
a tensor product resulting in a tensor 


